Spontaneous activity associated with primary visual cortex: a resting-state FMRI study.
نویسندگان
چکیده
Brain functions during the resting state have attracted considerable attention in the past several years. However, little has been known about spontaneous activity in the sensory cortices in the task-free state. This study used functional magnetic resonance imaging (fMRI) to investigate the existence of spontaneous activity in the primary visual areas (PVA) of normal-sighted subjects and to explore the physiological implications of such activity. Our results revealed that we were able to detect spontaneous activity, which was nonrandom in that it was distinctly clustered both temporally and spatially in the PVA of each subject. In addition, the neural network associated with the PVA-related spontaneous activity included the visual association areas, the precuneus, the precentral/postcentral gyrus, the middle frontal gyrus, the fusiform gyrus, the inferior/middle temporal gyrus, and the parahippocampal gyrus. After considering the functions of these regions, we speculated that the PVA-related spontaneous activity may be associated with memory-related mental imagery and/or visual memory consolidation processes. These findings confirm the presence of spontaneous activity in the PVA and related brain areas. This confirmation supports the perspective that brain is a system intrinsically operating on its own, and sensory information interacts with rather than determines the operation of the system.
منابع مشابه
Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملVisual dorsal stream is associated with Chinese reading skills: A resting-state fMRI study.
The present study explored the relationship between visual dorsal stream and Chinese reading by resting-state fMRI technique. We collected the resting-state brain activities and reading skills of Chinese-speaking adult readers. The results showed that the values of amplitude of low frequency fluctuation (ALFF) in right posterior parietal cortex (PPC) and left visual middle temporal area (MT) (t...
متن کاملCortical connective field estimates from resting state fMRI activity
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual ...
متن کاملInfluence of Spontaneous BOLD Fluctuation on Stimulus-Evoked BOLD in Human Visual Cortex using Event-related Paradigm
Introduction The blood oxygen level dependent (BOLD) signals acquired at the resting state without any stimulation have been found to fluctuate coherently within many brain networks of many species, which were believed to reflect spontaneous neuronal activities and functional connectivity of the brain. Such coherent spontaneous activity has also been demonstrated to account for trial-to-trial v...
متن کاملVisual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.
When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2008